Heterojunction Solar Cell Efficiency Improvement on Various C-si Substrates by Interface Recombination Modelling

نویسندگان

  • S. Olibet
  • E. Vallat-Sauvain
  • C. Ballif
  • L. Korte
  • L. Fesquet
چکیده

High efficiency Si heterojunction (HJ) solar cells must exhibit low interface recombination, as it limits the cell open circuit voltage (VOC). The study of the interface recombination of various a-Si:H/c-Si lifetime test samples gives insight into the recombination mechanisms, which are found compatible with an amphoteric recombination model [1]. We find that there is a trade-off between reduced interface defect density, yielding high-VOC cells (713mV), and increased field effect passivation resulting in higher efficient cells (19.1%) on flat wafers. Predicted VOCs of 725mV are reached for optimally textured nand p-type c-Si wafers passivated by intrinsic a-Si:H, but the VOCs of the cells are lower. The injection-level dependence of the surface recombination identifies the efficiency limiting factors of HJ solar cells. Such measurements are thus a powerful indicator to achieve highly efficient devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombination through amphoteric states at the amorphous/crystalline silicon interface: modelling and experiment

The performance of high-efficient crystalline silicon (c-Si) based solar cells is, besides bulk recombination, limited by the recombination losses on both c-Si surfaces. Dangling bonds at the c-Si surface are the defects governing interface recombination irrespective of the overlaying passivation layer (i.e. SiO2, SixNy, a-Si:H). Dangling bonds are also the predominant defects governing recombi...

متن کامل

Silicon Solar Cell Passivation using Heterostructures

Standard surface passivation schemes for crystalline silicon solar cells use SiO2 or SiNx. The c-Si surface passivation mechanisms related with these schemes have been elucidated within the framework of interface recombination modeled by an extended SRH formalism: interface recombination centers characteristic of the SiO2 passivation have larger electron (e) than hole (h) capture cross sections...

متن کامل

Hydrogen passivation of electronic gap states at the interfaces of ultrathin SiO2 layers on crystalline Si

Ultrathin SiO2 layers with a thickness of a few nanometers are proposed to act as functional elements in various high efficiency solar cell concepts: (i) A tunnel oxide layer integrated at the interface of a classical c-Si heterojunction with an a-Si:H emitter is proposed to reduce interface recombination due to excellent passivation properties [1]. Normally, these structures suffer from diffic...

متن کامل

Feasibility of using thin crystalline silicon films epitaxially grown at 165 °C in solar cells: A computer simulation study

We have previously reported on the successful deposition of heterojunction solar cells whose thin intrinsic crystalline absorber layer is grown using the standard radio frequency plasma enhanced chemical vapour deposition process at 165 ◦C on highly doped P-type (100) crystalline silicon substrates. The structure had an N-doped hydrogenated amorphous silicon emitter deposited on top of the intr...

متن کامل

Quantum Efficiency Modeling of Amorphous/Crystalline Silicon Heterojunction Photovoltaic Devices

Amorphous/crystalline silicon (a-Si/c-Si) heterojunctions are of particular importance in photovoltaic (PV) energy conversion in a cost-effective way. This is principally due to the low temperature (low-T) nature of the process. In this work, we have analyzed a (n)a-Si/(i)a-Si/(p)cSi heterojunction solar cell structure using theoretical models for internal quantum yield (IQY) and I-V behavior. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007